A central limit property under a modified ehrenfest urn design
نویسندگان
چکیده
منابع مشابه
A Central Limit Property under a Modified Ehrenfest Urn Design
We consider a stochastic process in a modified Ehrenfest urn model. The modification prescribes there to be a minimum number of balls in each urn, and the process records the differences between treatment assignments under a sampling scheme implemented with this modified Ehrenfest urn model. In contrast to the result that the difference process forms a Markov chain and converges to a stationary...
متن کاملCentral limit theorems for a hypergeometric randomly reinforced urn
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracted balls of a certain color given the past is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence ...
متن کاملCentral Limit Theorems for Generalized Pólya Urn Models
In this paper we obtain central limit theorems for generalized Pólya urn models with L ≥ 2 colors where one out ofK different replacements (actions) is applied randomly at each step. Each possible action constitutes a row of the replacement matrix, which can be nonsquare and random. The actions are chosen following a probability distribution given by an arbitrary function of the proportions of ...
متن کاملA functional central limit theorem for a class of urn models
We construct an independent increments Gaussian process associated to a class of multicolor urn models. The construction uses random variables from the urn model which are different from the random variables for which central limit theorems are available in the two color case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Probability
سال: 2006
ISSN: 0021-9002
DOI: 10.1239/jap/1152413731